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Abstract. We present an exact numerical method for obtaining the variation in the denmsity
of states’ associated with the adsorption of wires on a flat surface and with channels cut
into an otherwise planar surface. This general method is presented for the determination of
the resonances of shear horizontal polarization assoclated with such surface protuberances or
indentations. -

1. introducﬁon

Because of the progress of techniques such as microlithography or molecular beam epitaxy,
it is possible to create well defined grooves or adsorbed wires on an otherwise planar surface.
The activity around the electronic properties of such quantum wires is in constant expansion.
The acoustic resonances of shear horizontal polarization associated with adsorbed wires
started to be studied [1] on a simple structure consisting of a rectangular ridge fabricated
from a material having a different mass density and elastic moduli from the substrate on
which this ridge was adsorbed. The theoretical method used to solve this problem was
adapted to the rectangular form of the ridge. A general Green function theory was also
proposed [2] for the study of such acoustic resonances localized in the vicinity of an isolated
protuberance or indentation on the otherwise planar stress-free surface of a semi-infinite
elastic medium. This approach enabled one to calculate the lowest frequencies of acoustic
resonances associated with grooves and ridges of the same nature as the substrate.
In the present paper, we show how this Green function approach can be extended to
- adsorbed wires of different nature from the substrate. We show also how to obtain the
variation in the vibrational density of states between the surface with and without the

* - adsorbed wire. Knowledge of this entity gives not only the frequencies of the acoustic

resonances localized in the vicinity of the wires but also the w1dth of these resonances.
We shall consider the following systems: :

(1) the Inﬁmte material;
(i) the isolated wire (figure 1{(a)) Lmited by two dlfferent free surfaces, called
respectively My for — R < xy <+ R and x5 =0, and M, for x3 =E{(x1);
- (iii) the semi-infinite substrate (figure 1(b}) limited by the x; = § free surface;
(iv) the same substrate but with-a channel having the M, (x3 = £(x;)) shape (figure 1(c));
(v) the adsorbed wire (figure 1{d)); S
(vi) the filled channel (figure 1(e}).
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Figure 1. Schematic presentation of the systems studied in this paper: («) the isolated wire; (b)
the semi-infinite substrate; (c) the empty channel; (4} the adsorbed wire; () the filled channel.

We show that the study of the resonances associated with the systems presented in
figure 1 involves only the knowledge of the corresponding Green function between points
belonging to the My and M, surfaces. We shall explain using the example of shear horizontal
polarized vibrations how to calculate these Green functions elements out of the bulk Green
functions for the isolated wire (figure 1(a)) and for the flat surface (figure 1(b)).

For the channel (figure 1(c)), the Green function between the points lying along M) will
be obtained from knowledge of the surface Green function of the system in figure 1(5). The
M interface elements for the adsorbed wire will be obtained from knowledge of the surface
Grean function along the M, free surfaces of the constituent systams in both figure 1(#) and
figure 1(&). In the same manner using the surface Green functions along the M; surface of
the system in figures 1(a) and 1(c) we obtain the composite Green function along M; for
the system in figure 1(e).

In the next section, we outline how the above interface elements of the Green functions
are obtained in the case of vibrations with polarization parallel to the wires or the channels.
Then, in section 3, we derive the general theoretical expressions enabling us to calculate
the variation in the density of states between the flat surface (figure 1(#)) and each of the
three systems depicted in figures 1{c), 1{d) and 1(¢). Finally, the method is illustrated
by the determination of the resonances associated with adsorbed wires, channels and filled
channels of parabolic shape.
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2. The interface elements of the Green functions

We assumne . that the wire and the channel are oriented parallel to the x» axis. The elastic
displacement field is assumed to have shear horizontal polarization, i.e. to have the form

u(z,t) =.—(0, Ua(x1, x3|w), 0) cxp(—icut).' : - . (1)

The bulk equation of motion for vibrations with a propagatlon vector ks = 0 can be written
as [2]

Cas(d%/8x% + 8%/8x2 + w?/cBYus(x1, x3]w) = 0 )

where Cas is the elastic constant and ¢, the transverse speed of sound (= ~/C44/p where
p is the mass density).

We also introduce a Green function G(xy, x3 ]xl, x3) for the infinite elastic medium as
the solution to the equation :

Cas(37/0x7 + 97 /3xF + @ /eD)G (a1, x31x], X5) = 8(x1 — x[)8(x3 — x3) (3)
which satisfies outgoing wave conditions at infinity. A wuseful .represcntation of this function
is ' '

Py ) 2 VI
G (x1, x3lx3, %3) = —(1/4Ca) Hy “{(w/col(x1 — P+ -5 @

where H, U)(z) Jo{z) + 1¥p(z) is a2 Hankel function of the first kind.
In what follows we shall respectively conmder the ﬁve systems depicted in figure 1.
2.1 The isolated wire (ﬁgure I{a))

- The Green function g,(x, x3|x;, x3) for the isolated wire with stress free surfaces is gwen
also by equation (3) together with the appropriate boundary conditions. In the usual way [2—
4], we can obtain an integral equation for g, by using the Green theorem and the boundary
conditions. For this purpose, we multiply equation (3) for g, by G, equation (3) for G by
g.. subtract and integrate over the whole volume D, of the wire to obtain -

_ ok ,, :
galx1, x3lx], x3) + f . dx} A0 (xy, xslay, E(x] ))3a(x E(x))x, x3)

+R
+ f dxy A (xq, x3) %y, Q) galxy, Olx], %3) = G(x1, xsfxf, x5).  ~ (5)
-R

The two dimensional vectors & = (x{, x3) and @’ = (x{, x3} belong to D,, while the
vectors =" = (x7, £(x{)) or (x7, 0) run over the boundary curves M; and M, of the wire,
withMi ={—-R<x1<Rjx3s= (xl)} and Mo ={~R <x;1 < R; x3 = (0}. The operators
A:EM’) and A{M2) associated with the M; and M, curves are defined as

A8 O, x3lx], 25) = Cal~8'(37) 3/0%] + 3/0x51G (o, xslaf, gy~ (6)
for ¢’ € My and '

A;M;)(xh K3l &5) = (744(-—6/6}55')0(?61; #3147 xg)lx" 0
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for 2" € M.

Instead of equation (5) for §;(Da, D,), we can first limit ourselves to an integral equation
for g,(M, M) only, with M = {M), Mz}. In this case, we have to set x3 = £(x;) + € on
Mj and x3 = —¢ on M;, with ¢ an infinitesimal number. In order to solve numerically this
integral equation, we have to transform it into a discrete matrix equation. For this purpose,
we introduce along the x; axis 2 set of 2V equally spaced points {x,} such that

Xe=(n+3) Ax with n = —N,—N+1,...,N —1and Ax = R/N. (8

In this way, the curves M; and M> are divided into smail portions which can be labelled
as {x,, i) where { = 1,2 stands for M; or M. Then, we integrate both members of the
integral equation over the variable x| inside the elementary interval associated with the
point (x,;, {}. We obtain the following discrete equation:

2 N-1
ganilmi) + > Y Ay(ni|lk)ga(lklmy) = G{niimj). ®

k=1 I=-N

In this equation, the discrete elements of the operators G, @, and A, are given by their
average values over each interval in the following way. The discrete elements of the bulk
Green function will be defined as follows.

(i) For ' € M,

' 1 [Eers2 ‘
Glnilml) = — f L+ [E DR G (x, £ 2], D). (10a)
Ax Jy,—axp
(ii) For o' € Ma,
: 1 Xt AL/
G@nilm2) = — dx] G(xn, i; x{,2). (10B)
AX Jypenxp

Similar equations hold for the elements of g, and also of A, except, in the case of the
latter operator, for the factor Ax appearing in front of the integrals in equations (10}.

Let us define the matrix A;(M M) whose elements between all the points of the surface
space M are ' :

Da(ni|mf) = Sumdyj + Aalnilmj) - . an

and the matrices G(M M) and g,(M M) whose elements are respectively G (uf|mj) and
ga(ni|mj). With this notation, equation (9) reads

G (M M) Do(M M) = G(M M), (12)

The matrix elements of G(M M} and A,(M M) can be evaluated analytically to first order
in Ax. Their values are given in the appendix. By straightforward matrix algebra, we can
now obtain from equation (12), the matrix g,(M M), and in particular its truncated part
9.(M; M;) (i = 1 or 2) for the points situated along the surfaces M; or Ma, respectively.
We shall see in what follows that we shall need the inverse [g.(M2M2)]™! of this truncated
part for the study of the adsorbed wire (figure 1(e)).

The eigenfrequencies of the isolated wire are interesting by themselves. They can be
obtained from the poles of any element of the matrix g, and in particular from

det[ga(M;: M) =0 i=1lor2. (13)

Because the wire is finite in the (¥1, %s) plane, the eigenfrequencies of the wire, for
ko = Q, are discrete and there is an infinite number of them.



Acoustic resonances of adsorbed wires and channels : 8181

2.2, Tke semi—inﬁnite' substrate with a planar smface'(ﬁgur‘e I (b))

Let tis now congider the serm—mﬁmte medium sech that xg O, with the stwss—fre&suz‘face
at x3 = 0. o o
The Greéen function associated with this system is well known [3] fo be.

gb(xl,xslx,,xs)—~(1/4c44>Hé”{(w/co£cx1 P+ G- |
— (/4C) B (/e — 20t + (s + 2542} (14)

In what follows, we shall need only the matrix elemerits of this Green furiction g
between the 2N discrete points defined above along the M, surface (—R < x; < +R).
These matrix eléments are calclilated also by integration over the interval Ax; in the same
mannef as above for the bulk Gieen function G. Then.‘ explicit values are giveri in section
A2 of the appendix:

- 2.3. The channel (ﬁgure I(e})

The channe! will be constmcr.cd by ciitting out the wire (ﬁgurc I(a)) from the setm—mﬁmte
material (figure 1(b)). This can be done in a marier similar to what we did before for
_ the wire, in section 2.1, biif now we use the surface Green function g instead of the bulk
Green function G and obtain; instead of equation (5),

, +R o _ .
ge(x1, x3x7, 3) + f dxi Ac(xi, x3lx], —E(x!)) ge(x], —E(x] )fxl,xs)
’ J—R

RETHCET AN ! (15)

We take the shape of the chanmnel, thé form i3 = .—(§(x1), where £(x) has the sdime
expresswn as for the wiré in section 2.1. Ther '

AcCrew, sl =EGe) = Cis®'Ge) 3/0x) + 9/0x)guCon, malef Bty (16)

Followirig then thé same procedure as in section 2.1, we end up with the following matrix
equation:

Ge(MiM)AM MY = @y(MiM): e ¢ 1)

The matrix elements of gy (M1 M) and A (M M) aré given in sect[bn AS of the appendix.

It should be noted that the same procedure also gives the matrix eléments along the M,

~ surface of the Green function g (M, Mi) of the isolated wire complemenﬁary to the chanpel

- in figure 1(c). When tising this approach, ofie must remeriber that the derﬁranvc along the

normal to the suiface changes its sign compared with the channel calcnlation. Theri, we
obtaini : :

Gu(Mi M)A (M M) = Go(My M) o | (%)

wheré the matrix elements of gy(MiM;) are the sime as those for the channel
(equations (A16)}-(A17)) and those of A (M M,) are given in sectlon A3 of the append1x
Of céiirse, ’

G (M) = @M M), W)
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2.4. The adsorbed wire (figure 1(d))

For the adsorbed wire, we can also use the Green theorem in the unsual manner [2-4],
but with the surface Green functions g. and g, rather than the corresponding bulk Green
functions G, and G,. Now the indices a and b refer in general to respectively an isolated
wire and a substrate having different mass densities and elastic moduli. The Green function
for the adsorbed wire will be denoted ¢gg.

‘We multiply equation (3) for g4 by 9., equation (3} for g, by @4, subtract and integrate
over the whole volume of the adsorbed wire using the Green theorem and the stress-free
boundary conditions to obtain for (x;,x3) and (x{, x{) both inside the wire

gd(xl’ x3!x;7 xé) - gn(xh x3|xi! x_;,)

+R

]
==/ dx? ga(x1, x3lxl, x5 = 0) (Cﬁ’ gg[gd(xi’,xé’lx{,xé)]

) . 0)
xy=0

When (x1, x3) is inside the substrate and (x;, x3) is inside the wire, we obtain in the same
way

+R 8
ga(x1, X3x], x5) = ¥ gy(x1, X327, 2 = 0) (C“”

44 8" [gd(x_f:a xglxi ) xg)]
X3

) L21)
x§’=0

We use the requirement of the continuity of the stresses across the flat interface M
and discretize the equations (20) and (21} in the same manner as above. Eliminating the
derivative of g4 between these two equations §4], we obfain the following useful relation:

[Qa(MaM2)] ™! = [Ga(MaM2)T ™ + [G(MaM2)] ™! (22)

which ensures that the displacements and the stresses are continuous across the interface
M. :

2.5, The filled channel (figure I{e})

For the filled channel, it is straightforward to repeat the demonstration done above for
the adsorbed wire and to obtain its Interface elements g.(M; M) from those of the empty
channel and those of the wire, through the following relations:

9. (M M) = [Ge(MIMDT™ + [g (M MD] . 23)

As outlined in the next section, the above interface elements of the Green functions

corresponding to all the systems considered in this paper are sufficient for the studies of the
variation, compared with the flat substrate, in the densities of states.

3. Densities of states and resonances

The local density of states per unit of @ for a given system can be obtained from its Green
function g by the standard formula

n{xy, x3, @) = — !i_rg{t%o(xl. x3)w /7] Im{g(x1, ¥3; X1, X3l + i€)]} 24
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where p(xl,x3j is the mass density at the local point (x;,x3). The factor 2p(i:;, X3)w
appears because of the definition used here for the Green functions (see equatmn 3.
The total density of states can be obtained in the same manner:

n(w) =— gi_lgél[@w/f_r) Tr{p(x1, x3) Im{g(xy, x3; x1, X3|l@ +i€) 11T 25)

Before going into the evaluation of the trace appearing in equation (25}, let us recall
. how a Green function for a composite made out of two different materials can be calculated
- between any two different points of the composite. Although the following demonstration is
completely general, we shall outline it using the example of the adsorbed wire. The starting
point is equations (20) and (21) and the similar equations that one can obtain when (x], x})
is inside the substrate and (x;, x3) is first in the substrate and then in the wire. These four
equations are then discretized as explained above, in order to transform them into matrix
equations. This enables us then to obtain different relations between the reference Green
functions g, and g, and the composite Green function ¢g4. The relation [5] of mtcrest here
will be written with the following general matrix notations:

G.(D.D) O -
- 9«(DD) = [ 0 .gb(DbD.,)] | o (26)

" where D is the whole discretized space of ﬂlé adsorbed wire, Dy, its substrate part and D,
its wire part. The discrete points near the M- interface are at x3 =.—¢ in D, and at x5 = +¢

in Dy. So g,(DD) is a matrix formed out of two disconnected blocks.
Using the same notation for gq, one obtains the matrix equation

g:(DD) = g(DD) — gs(D M) g (Mo M) g5 (MzD) |
| +Qa(DM)IQa(MoM2)] ' a(M2D). | - @n

g, and g are complete (and not truncated) matrices. For such complete and
diagonalizable matrices we utilize the cychc invariance of the trace and the two following
general properncs -

gMD)G(DM) = —dg(M M) [d(pe>) @8)
and

Tr{Q(M M1~ dg(M M) /d(p?)} = HIn{detl g IDNT/d(ps™.  (29)
Together with equations (25)—(27) they enable us to obtain for the variation in the density of
states between the adsorbed wire on the one hand (figure 1(4)) and the uncoupled substrate
(_ﬁgure'l(b)) and isolated wire (figure 1(2)) on the other hand the following result:
nafw) — np(w) — na(w) = (1/7)(d/dw)[arg{det[da(MaM>) /Ga(M2 M2)Go (M2 M1}~ (30)

where g4(M2Ma) can be expressed as a function of @.(MaM3) and gb(MgMz) through the
relation (22). This enables us to express equation (30) in the following equivalent forms:

na(w) — np(@) ~ na(@) = (1/m)(d/dw)[arg{detga(M2M>) + Go (M2 M3)] (31a)-
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or

na(e) — np(@) — na(@) = (1/7)(d/dw) (areldet{[Qu(MaM3)] ™ + (G (Mad)] 1]
— argldet{[Qu(Mab2)] Y] ~ arglder{gy (Mo )]~ }]). (316)

In fact, we dre interested by the variation An(w) = na(w)—ny{@) ii the density of states
due to the deposition of the wire onto the flat surface of the substrate. This will be given
by the right-hand side (RHS) of equation (31b) in which the delta peaks associated with the
eigenfrequencies of the isolated wire (solutions of det[q, (Mo M)~ = 0) are eliminated.
Choosing to disregard the d1screte delta peaks, we can also obtain An{w) through the
expression

(1/7)(3/dw)(arg[det{[Qa (M2 M) + (Do (M2 M2)] 1] - arg{det{gy (M2 M) '] (31c)

Indeed, let us first note that, owing to the finiteness of the isolated wire, the qilantity
mg{det[ga(Mgﬂz)']_'} is always equal to O modulo #. In comparison with the RHS of
équation (315), we have eliminated in equation (31¢) the delta peaks associated with thé
solutions of det{@,(MaA10,)]"! = 0. However, we havé introduced new delta functions
connected to the solutions of det[g,(M>M:)] = 0 (see discussion of equation (32b) below)
which' did not exist in the RHS of equation (315) owing to compensation between the fizst
two térms.

In the practice of the numerical calculations, we have used both equation (315) and
equation (31¢) to evaluate An{w) disregarding in each case the peaks representing deltd
functions. In view of the discussion of these numerical applications presented in section 4,
‘Iet us now consider two limiting cases of equations (31). First, when the elastic constant
C44 of the substrate becomes vanishingly small, the elements of the matrix [gy(MzM2)]™"
20 to zero and so does the RHS of equation (315). The physical meaning of this result is that
the eigenmodes of the isolated wire, with stress-free boundary conditions, are not perturbed
by the substrate and, therefore, we have the situation of a wire surrounded by vacuum.

In the second limiting case, assume that Cﬁ) goes to oo; then the eleiments of the matrix
§b(M2', M) become vanishingly small and the RHS of equation 3 Ia) reduces to

(1/m)(d/dew) arg{detfga (M2 M2)]}. (32a)

Physically, in this limit, the planar surface (Mz) of the wire which is in contact with
the substrate becomes rigidly bound, whereas its curved surface (M) still remains free of
stress; in the foliowmg, we shall refer to this case as mixed boundaty conditions. Therefore,
the expression given in equation (32a2) corresponds to the difference between the densities
of states of two isolated wires submitted to mixed and stress free boundary conditions,
respectwely One consequence of this analysus is that the eigenfrequencies of the former
wire dre solutions of

det[@a(M2M2)] = 0. (328)

A similar result can be derived'fr,om the mathematical analysis of [4].
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~ 4. Nustrations of aconstic shape'resonahces

"In this section we present and comment on a few calculations of the density of states and
- .shape resonances associated with adsorbed wires and channels. In these applications, the
“wire (or channel) is limited partly by a planar surface and partly by a curved surface of
parabolic shape; this means that the function &(x;) is defined as £(x;) = —A[l - {(x; /R)?]
for x; € [-R, R]; in the following examples we have taken A = 2R. In the discretization
of the integral equations, the interval [—R, R] is divided into 2N equal parts. Owing to
the symmetry of the parabola, the acoustic resonances may be distinguished according to
their symmetric or antisymmetric character; this enables one to handle matrices of order N
(instead of 2N) for each symmetry. In most of the following calculations, N is put equal
to 100.
Let us first give the first few discrete c1genfrequenc:1es of an 1solated wire. When the
whole surface of the wire is free of stress, these frequencies aré obtained as solutions of
det[ga(MzMz)]‘ = {0 (equations (13) or (32:1')) and become :

wR/cr—l'?O ~3.20—3.65—-4.75—5.10—-6.15—-6.45—-6.95-7.60— 785
*for the symmetric modes and -
190 -3.25-4.55-5.30—5.90 - 6.85—-7.25...

for the antisymmetric modes

On the other hand, when the planar surface M, of the wire is assumed to be rigidly
bound whereas its curved surface M is free of stress (mixed boundary conditions), the
eigenfrequencies are solutions of det[g.(M>M>)] = 0 and the first few resonances are given
by

@R /¢, = 0.95 —2.50 ~ 3.95 — 445 — 5.45 — 5.80
for the symmélric modes and _
2.65 — 3.95 — 6.15 — 6.60

for the antisymmetric modes.
‘ Figures 2-4 give the variation An(m) = ng(w) — ny(w) in the total density of states
due to the deposition of a wire of material a onto the planar sarface of a substrate made
of material b. As a comparison, we have also displayed in each figure the local dénsity of
states integrated over the (planar) interface between the wire and the substrate. In these few
examples the two materials have the same mass densities (0@ /p® = 1) but different elastic
constants such that C2/C® = 1, 4 and 0.25 in figures 2, 3 and 4, respectively. When
the substrate is softer than the wire (figure 3) and even of the same nature {figure 2), there
is rather good correspondence between the peaks of the denmty of states and the discrete
eigenfrequencies of the isolated wire with stress-free surfaces; this connection becomes more
particularly pronounced when the ratio C(a} /Cﬂ’) increases. Also, there is a low-frequency
resonance of symmetuc character which may originate from the static (co = 0} mode of
the isolated wire. One can also see an increase in the background of the density of states
as a function of wR/¢,. Indeed, by increasing @, or equivalently the lateral size of the
wire, we should recover the density of states of a two-dimensional object (remember that
the wavevector k; -parallel to the wire is taken to be zero) which behaves like w. Now, in
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Al
2

A(b)

An(w)

wR Cy

Figure 2, (2) Symmetric modes asscciated with an adsorbed wire of the same material as the
substrate: --- -, variation in the total density of states (in onits of R/c;) as a function of wR/ey;
, local density of states (in units of (de)~!) integrated along the planar interface between
the wire and the substrate. (&) Same as for {a} but for the antisyrometric modes.
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A0

An {a)

Aw s A

L10

)
nlocaI{a)

An (w)

v

Figure 3 (a), () Same as for ﬁgures 2(a) and 2(b), respectively, but for an adsorbed wire a
_on a substrate b such that €5y Y/ c® =4and p(aJ /o® = 1. The quantities reponed on both
axes ‘are scaled with the velumty of sound in maferial a.
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wR /ct(a)

=0.25 and

Figare 4. (a), (5) Same as for figures 3(a) and 3(b), respectively, but for Cﬁ) /Cﬁ:’

p(“)/p“’) =1.
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our third example in which the wire becomes softer than the substrate (figure 4), one can
establish 2 connection between the peaks in the variation in the total density of states and
the eigenfrequencies of the isolated wire with mixed boundary conditions, However, the
local density of states over r.he wxre-substrate interface may show a different behavmur in
this case.

It is worthwhile making a few technlcal comments about the numencal caleulations,
- The value N = 100 used in our discretization procedure is quite sufficient to obtain with -
good accuracy the eigenmodes of the isolated wire, as well as the local density of states
at the wire—substrate interface. The variation An(g) in the total dens;ty of states derived.
from en‘her equation (315) or equiation (31c¢), is also obtained accurately, except : sometlmes
in the near vicinity of the eigenfrequencies. of the isolated wire, with either stress-free or
mixed boundary conditions, i.e. when

) det[ga(MzMz)}_',-—uO ' o . ,(33d)
or
det{g, (M2 M2)] = 0. ' , (335)
F 3
- 0.5]) -
N n
i
| ‘\_ -
0 \_,\? 4 6 N
~, R
\\ \ at /CL
NN AN
\\\ -\\_‘
N _
osl Nl N\
= ¢ N\
3 VLN
= :‘\.._, » 5
- <3| ﬁ\\ \\\
. -1_ - , \\\\; ‘\ R
. : . ' 5, ‘\“
N Ly
| | | \_\ \.\_
as] ‘ A
.

Figure 5. Variation in the total density of states {in units of ¢;/R) between a substrate with an
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Equation (315) may lead to an irregular behaviour in An(w) when @ is near a solution of
equation (33a), and so does equation (31c) near a solution of equation (338). Therefore, in
practice, one can evaluate An{w) alternatively from equation (31&) or equation (31¢) when
eo is near a solution of equation (33a) or of equation (33%). However, let us justify the choice
of this method by explaining the origin of these artefacts which otherwise decrease very
slowly by increasing N (in our calculation we used up to N = 300 to overcome only partly
these anomalies). Indeed, owing to the discreteness of the isolated wire eigenfrequencies,
the quantity arg{det[g,(M2M>)]1"'} in equation (314) should, in principle, always take the
value 0 meodulo . In fact, because of the discretization of the integral equations, this
statement is only approximately satisfied and, in particular, requires a very high value of
N near the sclutions of equations (33). Therefore we can eliminate the corresponding
anomalies in the density of states by using alternatively equation (31%) and equation (31¢).
Let us emphasize that, far from the eigenmodes of the isolated wire, both equation (315)
and equation (31c) give similar results and can be used indifferently.

Finally, we give a few examples of the densities of states related to the geometry
of a channel or filled channel of parabolic shape near the planar surface of a substrate
(figure 1(c}). Figure 5 displays the variation in the total density of states, of symmetric
or antisymmetric character, when a channel is cut near the planar surface: Anf{w) =
ne(w) — ny(w). The decrease in the background in the density of states can be related
to the lack of matter in the new substrate when creating the channel. The most prominent
feature in this figure is a low-frequency antisymmetric resonance; also, one can observe a
few weak peaks and shoulders. In figures 6 and 7, we have presented the variation in the
total density of states when a channel is cut near the planar surface of a substrate b and
filled with a different material a: An(w) = ne(w) — np(w). In these figures, the materials a
and b have the same mass densities but different elastic constants such that Cﬁ) / Cﬁ) =4
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Figure 7. Sarme as for figure € but for c®y Cﬁ) =0.25 and p® )‘,o“’) =1.

and 0.25, respectively. In figure 6, there are only very broad features but a decrease in
An(w) versus o which can be explained by the higher stiffness of material a compared .
with the substrate. On the contrary, figure 7 displays an increasing background of An{w)
as well as rather sharp peaks. In the limit of a very large ratio C, )/ Cﬁ) , one should find
the eigenmodes of an isolated wire having its planar surface (M) free of stress and its
curved surface (M) rigidly bound. The first few resonances of such a wire are given by
wRjey = 2,10 — 3.45 — 485 —5.35 — 6.30 — 6.90 — 7.75... for symmetric modes and
37—5.15-6.50-7.0-7.85... for antisymmetric modes. The peaks in figure 6 show
some similarity thh this picture even though the correspondence is not totally satisfactory;

higher values of C might be necessary to achieve good correspondence.
A more detalled analysis of the resonances associated with adsorbed wires and channels

will need also the consideration of other shapes or configurations of the wires.

5. Conciu_sions

We presented in this paper a general method for the calculation of the density of states
associated with the adsorption of wires on a flat surface and with empty and filled channels
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cut into an otherwise planar surface and illusirated it by a few applications. This method,
although outlined for vibrations of shear horizontal polarization, is completely general [6]
and will be used for vibrations polarized in the saggital plane. Of course the bulk Green
functions may have in general to be calculated numerically. This method should also be
useful for the study of other excitations (electrons, magnons and polaritons) in any composite
material and in particular in quantum wires and dots.

This method enables us also to address the problems of scattering [6] by wires, channels
and dots. Such problems are of current interest for in particular the scattering of acoustic
waves by single resonating elements [7-9] and by periodic and quasi-periodic corrugated
solid surfaces (see, e.g., [10,11]). In particular, a correlation was found recently [11]
between the resonant frequencies of an adsorbed block and the appearance of a frequency
gap in the transmission of ultrasonic waves through a plate decorated with Lucite blocks.

Appendix. Interface matrix elements for the systems studied in this paper

| We use the following notation to give the interface matrix elements:

§(m) = £(xm) §'(m) = [0§(x1)/x1)|x==x, £"(m) = (0% (x1)/0x7 ) xy=x,
and log ¥ = 0.5772156649. .. (the Euler number).

Al. The wire (figure 1{a})

The surface elements of the bulk Green function G as defined by equations (10) are as
follows. :

(i) Between two points lying on the Af; surface,

G(nliml) = —/4Ca){1 + &' ()}
x HO@/e){(n — %m)® + [(E(0) —EmTY] n#Em (A1)

G(nl|nl) = —(1/4w Ca)(1 + [ ()3V>
x (i +2 — 2loglly Ax (@/c){l + [ (mPFD). (A2)

(ii} Between two points lying on the M; surface,
G(n2im2) = —Q/AC) H [w/e)ltn —xn]]l  n#m (A3)
G(n2in2) = —(1/4xCap){iz +2 — 2loglly Ax (@/c)]}. | (Ad)
(iii) Between poihté lying one on the M surface and the other on the M, surface,

G(nl|m2) = —(1/4Cas) H T(w/ e (s — Xm)* + [E@T}T (A5)

G(n2lm1) = —G/ACa){1 + [ )P B e/ e) (G — xn)* + [E(m) )21, (A6)

The elements of the matrix A;{M M} as defined by equation (11) are as Ifollows.
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(i) Between two points of the M, surface,

Anliml) = ~[( Az @) /ded _
x [{~E"(m}Cen = %m) + [£(R) — EEM}/{(tn — Xm)? + [E(n) — E(m)IP}]

x BOI@/){0n — 1) + 6D —EmPI] . m#n  (AD)
where | |

HO@) = h@) + ik - : : (A8)

Aunlinl) = § — (Ar/ADIE (/0 + E WP . (49

(ii) Between two points of the M, surface,
o Am2m2)=0 - m#En : (A10)
A2 =1 L . (ALD
(iii) Bctwecﬁ poilllts lying one on the Ml surféée and:the other onrthe M .surfacc,

a<n1|m2) = [ Ax )/ AcTTEM) /(G — %m) + @]
x H{P[(w/c){(xn — xn)* + [s(n)zz}”z]] T (AL2)

Au(m2im1) = — (A% 0/4c)I—E (m)(xn _—fxm)é EOmN/{(n = xm)* + P
x HL@/ed{(xs = xn)* + [Em) ) /2] | (A13)

A2, The semf-inﬁnite material (figure 1(b))

After equation (14), the matrix elements of the surface Green function gy along Ma(—R S,
x € R, x3 =0) are .

go(n2lm2) = ~(/2Cu)Hg (@[l —xml)  mAm - (ALY)
g6(n2in2) = —(1/2w Cep)llim +2 ~ 2log({¥[(Ax w)/cd}]. - (A15)

A3. The channel (figure 1{c)}

After equation (17), the matrix elements of the surface Green function g, along the M;
surface of the channel are '

gb(numl) —(:/4044){1 + [E'm)PY?

x (HOLwo/e){((n = xnY+ [5() — Eu)]'2] ,
+ H Hw/e)(n — %) + EO +EmPY2D) m#n (Al6)
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go(nlinl) = —(i/4Ca){1 + [§'W)*}/?
x (1—2i/m +(2i/7) logl Ly Ax(w/c){1+E 21+ HP [Qw fedie ().
(A17)

The elements of the matrix A (M; M) of equation (17) are

Ag(nllml) = (i/4) Ax (/e
x [{—& (m)(xn — %) + [E () — EE]}/ {000 — xm)* + [E(n) — E(R)2}/2]
x HP[(@/c) (i —%m)* + [E(n) — E@PY R + (/49 Ax (w/c)
x [{—&'(m)(on — %) — [E() + EEIH (% — xm)? + [E(r) + E)PY2]
x HP[(@/c){(tn — xm)* + EM) + EmPYA] n#m (A18)

Ag(rlinl) = L+ (Ax/4m)IE" () /{1 + &' T + (/D) Ax (/) HPLQw/c)lE @)
(A19)

The matrix elements of A, (M;M;) needed in equation (18) for the calculation of the
Green function elements of g,,(M; M;) are

Ay(nllml) = —A (nliml) nFEmM {A20)

Aw(nlinl) = & — (Ax4m)IE" () /{1 + [E' (PHD — (/4) Ax (w/cd B [Qw/c)Em)).
(A2D)
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