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I. Phys.: Condens. Matter 5 (1993) 8177-8194. Printed in the UK 

Acoustic resonances of adsorbed wires and channels 

B Djafari-Rouhani and L Dobrzynski 
Equipe de Dynamiqlle des Interfaces, Iaboratoire de Dynamiqne et Stmcture des Mat6riaux 
Molbulaires, Unite de Recherche associ& an CNRS 801, Unite de physique, Univenite de 
Lille I, F-59655 Villeneuve d'Ascq, France 

W i v e d  28 May 1993 

Abstract We present an exact numerical method for obtaining the variation in the density 
of states associated with the adsorption of wires on a flat surface and with channels cut 
into an otherwise planar surface. This general method is presented for the detemation of 
the reso~ances of shear horizontal polarization associated with such surface protubemces or 
indentations. 

1. Introduction 

Because of the progress of techniques such as microlithography or molecular beam epitaxy, 
it is possible to create well defined grooves or adsorbed wires on an otherwise planar surface, 
The activity around the electronic properties of such quantum wires is in constant expansion. 
The acoustic resonances of shear horizontal polarization associated with adsorbed wires 
started to be studied [l] on a simple shucture consisting of a rectangular ridge fabricated 
from a material having a different mass density and elastic moduli from the substrate on 
which this ridge was adsorbed. The theoretical method used to solve this problem was 
adapted to the rectangular form of the ridge. A general Green function theory was also 
proposed [2] for the study of such acoustic resonances localized in the vicinity of an isolated 
protuberance or indentation on the otherwise planar stress-free surface of a semi-infinite 
elastic medium. This approach enabled one to calculate the lowest frequencies of acoustic 
resonances associated with grooves and ridges of the same nature as the substrate. 

In the present paper, we show how this Green function approach can be extended to 
adsorbed wires of different nature from the substrate. We show also how to obtain the 
variation in the vibrational density of states between the surface with and without the 
adsorbed wire. Knowledge of this entity gives not only the frequencies of the acoustic 
resonances localized in the vicinity of the wires but also the width of these resonances. 

We shall consider the following systems: 

(i) the infinite material; 
(ii) the isolated wire (figure l (u))  limited by two different free surfaces, called 

(iii) the semi-infinite substrate (figure I@)) limited by the x3 = 0 free surface; 
(iv) the same substrate but with a channel having the MI (x3 = .$(XI)) shape (figure l(c)); 
(v) the adsorbed wire (figure l (d));  
(vi) the filled channel (figure I@)). 

respectively M2 for - R < XI < + R  and x3 = 0, and MI for x3 =  XI); 
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Figure 1. Schematic presentation of Ihe systems SNdied in this paper: (a) the isolated wire; (b)  
the semi-infinite subsme; (c) the empty channel; (d) the adsorbed Wire; (e) the filled channel 

We show that the study of the resonances associated with the systems presented in 
fi,we 1 involves only the lmowledge of the corresponding Green function between points 
belonging to the MI and M2 surfaces. We shall explain using the example of shear horizontal 
polarized vibrations how to calculate these Green functions elements out of the bulk Green 
functions for the isolated wire (figure l (a) )  and for the flat surface (figure l(b)). 

For the channel (figure I@)), the Green function between the points lying along MI will 
be obtained from knowledge of the surface Green function of the system in figure I@). The 
MZ interface elements for the adsorbed wire will be obtained from knowledge of the surface 
Green function along the A42 free surfaces of the constituent systems in both figure l (a )  and 
figure l(b). In the same manner using the surface Green functions along the MI surface of 
the system in figures I(a) and I(c) we obtain the composite Green function along MI for 
the system in figure l(e). 

In the next section, we outline how the above interface elements of the Green functions 
are obtained in the case of vibrations with polarization parallel to the wires or the channels. 
Then, in section 3, we derive the general theoretical expressions enabling us to calculate 
the variation in the density of states between the flat surface (figure I@)) and each of the 
three systems depicted in figures l(c), I(d) and l(e). Finally, the method is illustrated 
by the determination of the resonances associated with adsorbed wires, channels and filled 
channels of parabolic shape. 
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2. The interface elements of the Green functions 

We assume that the wire and the channel are oriented parallel to the xz axis. The elastic 
displacement field is assumed to have shear horizontal polarization, i.e. to have the form 

U@, t )  = (0, UZ(XI ,X~~O),  O)exp(-iot). (1) 

The bulk equation of motion for vibrations with a propagation vector kz = 0 can be written 
as P I  

c,(a2/ax: + a2/ax: +~z/c ,2)uz(x1 ,  X 3 1 O )  = o (2) 

where 

We also introduce a Oreen function G(xl, x3Ix; ,x$)  for the infinite elastic medium as 

where CU is the elastic constant and ct the transverse speed of sound (ct = 
p is the mass density). 

the solution to the equation 

cU(a2/ax: + a2/ax: + &/c;)c(xl, x ~ I x ; , x ; )  = s(xl - x;)s(x3 - x;) (3) 

which satisfies outgoing wave conditions at infinity. A useful representation of this function 
is 

G ( x I . ~ ~ I ~ I . ~ )  = -(~/~C~~)H~)[(O/C~)I(X~ -x i ) '+  (x3 -x3) r 2 I I12 1 (4) 

where Hg'(z) = l ~ ( z )  + iYo(z) is a Hankel function of the first kind. 
In what follows we shall respectively consider the five systems depicted in figure 1. 

2.1. The isolaied wire yigure I(a)) 

The Green function g,(xl, x3 1.;. x i )  for the isolated wire with stress free surfaces is given 
also by equation (3) together with the appropriate bounday conditions. In the usual way [2- 
41, we can obtain an integral equation for g, by using the Green theorem and the boundary 
conditions. For this purpose, we multiply equation (3) for g. by G, equation (3) for G by 
ga, subtract and integrate over the whole volume D, of the wire to obtain 
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for I" E Mz. 
Instead of equation (5) for g,(D,, Da), we can first limit ourselves to an integral equation 

for g,(M, M) only, with M {MI, M2} .  In this case, we have to set x3 = c(xl) + E on 
MI and x3 = --E on Mz, with e an infinitesimal number. In order to solve numerically this 
integral equation, we have to transform it into a discrete matrix equation. For this purpose, 
we introduce along the X I  axis a set of 2N equally spaced points {x"}  such that 

(8) 

In this way, the curves MI and M2 are divided into small portions which can be labelled 
as (xn, i )  where i = 1,2 stands for MI or Mz. Then, we integrate both members of the 
integral equation over the variable xi  inside the elementary interval associated with the 
point (xm, i). We obtain the following discrete equation: 

B Djafari-Rouhani and L Dobrzynski 

x, = ( n +  $ ) A x  with n = - N ,  - N +  1,. .. , N - 1 and Ax = R / N .  

In this equation, the discrete elements of the operators G ,  ga and A, are given by their 
average values over each interval in the following way. The discrete elements of the bulk 
Green function will be defined as follows. 

(i) For e' E MI, 

(ii) For x' E Mz, 

Similar equations hold for the elements of ga and also of A, except, in the case of the 

Let us define the matrix A , ( M M )  whose elements between all the points of the surface 

(11) 

and the matrices G ( M M )  and g,(MM) whose elements are respectively G(ni1mj) and 
g,(ni Imj). With this notation, equation (9) reads 

latter operator, for the factor Ax appearing in front of the integrals in equations (10). 

space M are 

A,(nilmj) = S,,S,, + A,(ni[mj) 

g.(MM)A,(MM) = G ( M M ) .  (12) 
The matrix elements of G ( M M )  and A a ( M M )  can be evaluated analytically to first order 
in Ax. Their values are given in the appendix. By straightforward matrix algebra, we can 
now obtain from equation (12), the matrix g.(MM), and in particular its truncated part 
ga(MiMi) (i = 1 or 2) for the points situated along the surfaces MI or Mz,  respectively. 
We shall see in what follows that we shall need the inverse [g,(MzM2)1-' of this truncated 
part for the stlldy of the adsorbed wire (figure l(e)). 

The eigenfrequencies of the isolated wire are interesting by themselves. They can be 
obtained from the poles of any element of the matrix g. and in particular from 

det[g,(M,Mi)l-' = 0 i = 1012. (13) 
Because the wire is finite in the (21.23) plane, the eigenfrequencies of the wire, for 

k2 = 0, are discrete and there is an infinite number of them. 
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2.2. The semi-injinite substrate with a planar surface (figure l(b)) 

Let us now consider the semi-infinite medium such that x3 > 0, with the stress-free surface 
at x3 = 0. 

The Green function associated with this system is well known [3] fo be 

gb(xl,x3lXI,x;) -Li/4c,)H,'"((O/Ct)[(Xl -x i ) '+  (x3 -X3)  r ~ l  1 112 1 
(14) - (~/~C,)H, '"I(~/E~)[(X~ - x i ) ' +  (x3 + x 3 )  I 2 I 112 I. 

In what follows, we shall need only the matrix elemnts of this Green function g b  
between the 2N discrete p in ts  defined above along the M2 surface ( - R  Q nl < .+R). 
These matrix elements are calchlated also by integration over the interval Ax, in the same 
manner,as above for the bulk Green function G. Their explicit values are given in section 
A2 bf die appendif; 

2.3. The chnnel l (c ) )  

The channel will be coestmced by cutting out the wire (figure I@)) from the semi-infinite 
m+t&al (fig+ l(b)). 'his can be done in a muiner sidlar to what we did before for 
the wire, in section 2.1, but now we uie the surface Green function g b  instead of the bulk 
@een function C; and obtain; instead of equation (5). 

gc(xi.xs~x~,~;) + / _ ~ R R ~ ; A J * ~ , X ~ I X : .  -c(xY))gc(x1. N -RX;)IX~.~;) ~ " 

= gb (XI 9 X 3  15; I (Y 
We take the shape of tlid channel, the form X3 = T&), where  XI) has the same 
expression as for the wire in section 2.1. Then 

A , ( x ~ ,  X~IX;. -g(~;)) = c&yX;) alax; + a/aX;l)gb(XI, X~IX;, x ; ~ ) I + ~ ~ ~ ~ ) .  (16) 

Foliowing then the same procedure as in sktion 2.1, we end U$ with the following matrix 
equation: 

gdMiMi)&(Mi MI) = gb(MI MI): (17) 

The matrix element$ bfgb(M1Mi) and A ~ ( M ~ M ~ )  are given in seitibii A3 ofthe appendix. 
It should be noted that the same procedure also gives the matrix eiements along the M I  

surface of the Green function g;(MIMl) of the isolated wire complemenhy to fie channel 
in figure 1 s .  When using this approach, one must remember that the de&ative along *e 
no-al to the suifacd changes its sign compared With the channel calculatiod. Then, we 
obtain 

g w ( M i M i ) A d K M i )  = gb(MiMd (18) 

where the matrix elements of gb(MIM1) are the s h e  as those for &e channel 
(equ.aiions (A16)-(A17)) and thoie of &(MIMI) are given in sectibn A3 of the appendix. 
Of .course, 

M M k )  E gaiMiMi). (19) 
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2.4. The adsorbed wire (figure l (d) )  

For the adsorbed wire, we can also use the Green theorem in the usual manner [2-4], 
but with the surface Green functions g. and gb rather than the corresponding bulk Green 
functions G, and Gb. Now the indices a and b refer in general to respectively an isolated 
wire and a substrate having different mass densities and elastic moduli. The Green function 
for the adsorbed wire will be denoted gd.  

We multiply equation (3) for gd by ga, equation (3) for ga by g d ,  subtract and integrate 
over the whole volume of the adsorbed wire using the Green theorem and the stress-free 
boundary conditions to obtain for ( X I .  x3) and ( x i ,  x i )  both inside the wire 

B Djafari-Rouhani and L Dobrzynski 

gd(xl.x31xI,x;) - ga(Xl, x31xi, x;) 

When ( x l , x 3 )  i s  inside the substrate and ( x i ,  x i )  is inside the wire, we obtain in the same 
way 

We use the requirement of the continuity of the stresses across the flat interface M2 
and discretize the equations (20) and (21) in the same manner a s  above. Eliminating the 
derivative of g d  between these two equations [4], we obtain the following useful relation: 

(22) 

which ensures that the displacements and the stresses are continuous across the interface 
M Z  . 
2.5. Thefilled channel (figure l (e))  

For the filled channel, it is straightforward to repeat the demonstration done above for 
the adsorbed wire and to obtain its interface elements ge(MIMI) from those of the empty 
channel and those of the wire, through the following relations: 

[gd(MZMZ)]-’ = [ga(M2M2)1-’ f [gb(hf”M2)1-’ 

t!3.(M,M1)1-1 = [gc(MlMl)I-’ + rgw(M*MI)I-’. (23) 

As outlined in the next section, the above interface elements of the Green functions 
corresponding to all the systems considered in this paper are sufficient for the studies of the 
variation, compared with the flat substrate, in the densities of states. 

3. Densities of states and resonances 

The local density of states per unit of OJ for a given system can be obtained from its Green 
function g by the standard formula 

~ ( x I , x ~ , o J )  = -lim{I2p(xl,~3)0/~lImIg(xl,x3; x1,x31w +ie)l) (2.4) e-tO 
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where p ( x l , x 3 )  is the mass density at the local point ( ~ 1 ~ x 3 ) .  The factor Z p ( x ~ , x ~ ) w  
appears because of the definition used here for the Green functions (see equation (3)). 

The total density of states can be obtained in the same manner: 

n ( d  = - ~ ~ U ( ~ o / ~ ) T ~ I p ( ~ ~ , ~ 3 ) I m [ g ( ~ ~ , x 3 ; x l , x ~ l o + i € ) l l I .  (25) 

Before going into the evaluation of the trace appearing in equation (Z), let us recall 
how a Green function for a composite made out of two different materials can be calculated 
between any two different points of the composite. Although the following demonstration is 
completely general, we shall outline it using the example of the adsorbed wire. The starting 
point is equations (20) and (21) and the similar equations that one can obtain when ( x i ,  x i )  
is inside the substrate and ( X I ,  x3) is first in the substrate and then in the wire. These four 
equations are then discretized as explained above, in order to transform them into matrix 
equations. This enables us then to obtain different relations between the reference Green 
functions g. and g b  and the composite Green function gd. The relation [5] of interest here 
will be written with the following general matrix notations: 

where D is the whole discretized space of the adsorbed wire, Db its substrate part and Da 
its wire part. The discrete points near the MZ interface are at x3 = --E in D ,  and at x3 = +E 
in Db. So g,(DD) is a matrix formed out of two disconnected blocks. 

Using the same notation for gd .  one obtains the matrix equation 

g. and g d  are complete (and not truncated) matrices. For such complete and 
diagonalizable matrices we utilize the cyclic invariance of the trace and the two following 
general properties: 

g(MD)g(DM) = -dg(MM)/d(p& (28) 

and 

TrI[g(MM)I-l dg(MM)/d(poz)l = dl[lnIdet[s(MM)lII1/d(po2). (29) 

Together with equations (25x27) they enable us to obtain for the variation in the density of 
states between the adsorbed wire on the one hand (figure l(d)) and the uncoupled substrate 
(figure l(b)) and isolated wire (figure l(a)) on the other hand the following result: 

nd(0) - nb(W) - (l/n)(d/dw)I[argIdet[gd(M~M~)/g,(M~M~)gb(M~M2)IJn (30) 

where gd(M2MZ) can be expressed as a function of g,(MzMz) and gb(MZMz) through the 
relation (22). This enables us to express equation (30) in the following equivalent forms: 

nd(W) - nb(0) -&(U) = (l/ir)(d/do)UargIdet[g.(MzMz) + gb(M2MZ)l ( 3 1 4  
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Or 
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In fact, we  ire'interested by @e variation An(@) = nd(o)-nb(@) in the density of states 
due to the deposition of the wire onto the flat surface of the substmte. This will be given 
by the right-hand side (RHS) of equation (31b) in which the delta peak  associated with the 
eigenfrequencies of the isolated wire (solutions of det[g,(MzMz)]-' = 0) are eliminated. 
Choosing to disregard the discrete delta peaks, we can also obtain An(@) through the 
expreision 

(I/x)(d/do)(argUdet~[sa~MzMz)1-' + [gb(MZMZ)l-')j - arg{det[%(h%)I-'l). (3lC) 

Indeed, let us' first note that, owing to the finiteness of the isolated wire, the quantity 
arg(det[g,(Mzh&)]-'} is always equal to 0 modulo x .  In comparison with the RHS of 
equation (31b), we have eliminated in equation (31c) the delta peaks associated with the 
solutions of det[g.(MzM2)J-' = 0. However, we have introduced new delta functions 
connected to the solutions of det[g,(M~Mz)] = 0 (see discussion of equation (32b) below) 
which' did not exist in the RHS of equation (31b) owing to compensation between the first 
two terms. 

In the practice of the numerical calculations, we have used both equation (31b) and 
equation (31,) to evaluate An(@) disregarding in each case the peaks representing delin 
functions. Id a e w  of the discussion of these numerical applications presented in section 4, 
let us now consider two limiting cases of equations (31). F i t ,  when the elastic constant 
C:) of the substrate becomes vanishingly small, the elements of *e matrix [gt,(MzMz)]-' 
go t6 zero and so does the RHS of equation (31b). The physical meaning of this result is that 
the eigenmdes of the isolated wire, with stress-free boundary condieons, are not perturbed 
by the substrate and, therefore, we have the situation of a wire surrounded by vacuum. 

In the second limiting case, assume that C$) goes to CO; then the elements of the matrix 
$,(Mi, Mz) become vanishingly small and the RHS of equation (31a) reduces to 

( l / d  (d/do) argIdet[g,(MzMdI}. (324 

Physically, in this limit, the planar surface (Mz) of the wire which is in contact with 
the substrate becomes rigidly bound, whereas its curved surface (MI) still remains free of 
stress; in the following, we shall refer to this case as mixed boundary conditions. Therefore, 
the expression given in equation (3%) corresponds to the difference between the densities 
of states of two isolated wires submitted to mixed and stress free boundary conditions, 
respectively. One consequence of this analysis is that the eigenfrequencies of the former 
wire are solutions of 

det[ga(MzM~)l = 0. ( 3 W  

A similar result can be derived from the mathematical analysis of [4]. 
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4. Illustrations of acouslic shape resonances 

In this section we present and comment on a few calculations of the density of states and 
shape resonances associated with adsorbed wires and channels. In these applications, the 
wire (or channel) is limited partly by a planar surface and partly by a curved surface of 
parabolic shape; this means that the function  XI) is defined as :(XI) = -A[1- (xi/R)’] 
for XI E [ - R ,  RI; in the following examples we have taken A = 2R. In the discretization 
of the integral equations, the interval [ -R ,  RI is divided into 2N equal parts. Owing to 
the symmetry of the parabola, the acoustic resonances may be distinguished according to 
their symmetric or antisymmetric character; this enables one to handle matrices of order N 
(instead of 2N) for each symmetry. In most of the following calculations, N is put equal 
to 100. 

Let us first give the first few discrete eigenfrequencies of an isolated wire. When the 
whole surface of the wire is free of stress, these frequencies are obtained as solutions of 
det[g,(M2M2)]-’ = 0 (equations (13) or (32a)) and become 

URIC, = 1.70-3.20-3.65-4.75-5.10-6.15-6.45-6.95-7.60-7.85.. . 
for the symmetric modes and 

1.90 - 3.25 -4.55 - 5.30 - 5.90 - 6.85 -7.25.. . 

for the antisymmetric modes. 
On the other hand, when the planar surface MZ of the wire is assumed to be rigidly 

bound whereas its curved surface MI is free of stress (mixed boundary conditions), the 
eigenfrequencies are solutions of det[g,(MzMz)] = 0 and the first few resonances are given 
by 

u R / c ~  = 0.95 - 2.50 - 3.95 - 4.45 - 5.45 - 5.80 

for the symmehic modes and 

2.65 - 3.95 - 6.15 - 6.60 

for the antisymmetric modes. 
Figures 2-4 give the variation An@) = n&) - nb(o) in the total density of states 

due to the deposition of a W i r e  of material a onto the planar surface of a substrate made 
of material b. As a comparison, we have also displayed in each figure the local density of 
states integrated over the (planar) interface between the wire and the substrate. In these few 
examples the two materials have the same mass densities (p(*)/p”’ = 1) but different elastic 
constants such that Cz)/C$) = 1, 4 and 0.25 in figures 2, 3 and 4, respectively. When 
the substrate is softer than the wire (figure 3) and even of the same nature (figure 2), there 
is rather good correspondence between the peaks of the density of states and the discrete 
eigenfrequencies of the isolated wire with stress-free surfakes; this connection becomes more 
particularly pronounced when the ratio Cg/C$) increases. Also, there is, a low-kquency 
resonance of symmetric character which may originate from the static (o = 0) mode of 
the isolated wire. One can also see an increase in the background of the density of states 
as a function of oR/c, .  Indeed, by  increasing 0, or equivalently the lateral size of the 
wire, we should recover the density of states of a two-dimensional object (remember that 
the wavevector kz  parallel to the wire is taken to be zero) which behaves like o. Now, in 
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Figure 2. (a )  Symmetric modes associated with an adsorbed wire of the same material as the 
substrate: ----, variation in the total density of states (in units of R l q )  as a function of mR/cI; 
- , local density of states (in UN& of (4cJ-I) integrated along the planar interface between 
the wire and the substrate. (b) Same as far (0) but for the antisy”etric modes. 
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F i e  3. (U),  (b) Same as for figures 2(0) and 2@). respectively, but for an adsorbed wire a 
on a substrate b such that C$)/C$) = 4 and p:)/p" = 1.  The quantities repoaed on both 
axes are scaled with the velocity of sound in material a 
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Figure 4. (a). (b) Same as cor figures 3(a) and 3(b), respectively, but for Ci)/C$) = 0.25 and 
p(=))lp@) E 1. 
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our third example in which the wire becomes softer than the substrate (figure 4), one can 
estabush a connection between the peaks in the variation in @e ,@tal density of states aod 
the eigenfrequencies of the isolated wire with mixed boundary conditions. However, the 
local density of states over the wire-substrate interface may . .  show a different behaviour in 
this case. 

It is worthwhile making a few technical comments about the numerical .calculations. 
~ The value N = 100 used in our discretization procedure is quite sufficient to .obtain with 

good accuracy the eigenmodes of the isolated wire, as well ps the local density of states 
at the wire-substrate interface. The variation A,c(o) in the ptal density of states, derived 
from either equation (31b) or equation ( 3 1 ~ ) .  is also obtained accurately, except sometimes 
in the near vicinity of the eigenfrequencies of the isolated wire, w ie  either stress-free or 
mixed boundary conditions, i.e. when 

- 

or 

I 

Figure 5. Variation in Ihe total density of states (in units of s / R )  between a subskate with an 
empty channel and a Rat subsme: - - - -, symmeh'ic modes: - . -, antisymmetric mcdcs. 
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I 
t 

Figure 6. Variation in the total dens@ of states (in umts of c?/R) for a channel filled with a 
material a such that C$)/CE) = 4 and ~ ( ~ ) / p @ )  = 1. 

Equation (31b) may lead to an irregular behaviour in An@) when w is near a solution of 
equation (33a), and so does equation (31c) near a solution of equation (336). Therefore, in 
practice, one can evaluate An(w) alternatively from equation (316) or equation (31c) when 
o is near a solution of equation (33a) or of equation (33b). However, let us justify the choice 
of this method by explaining the origin of these artefacts which otherwise decrease very 
slowly by increasing N (in our calculation we used up to N = 300 to overcome only partly 
these anomalies). Indeed, owing to the discreteness of the isolated wire eigenfrequencies, 
the quantity arg{det[g,(MzM2)]-'} in equation (31b) should, in principle, always take the 
value 0 modulo n. In fact, because of the discretization of the integral equations, this 
statement is only approximately satisfied and, in particular, requires a very high value of 
N near the solutions of equations (33). Therefore we can eliminate the corresponding 
anomalies in the density of states by using alternatively equation (316) and equation (31c). 
Let us emphasize that, far from the eigenmodes of the isolated wire, both equation (31b) 
and equation (31c) give similar results and can be used indifferently. 

Finally, we give a few examples of the densities of sta- related to the geometry 
of a channel or filled channel of parabolic shape near the planar surface of a substrate 
(figure I(c)). Figure 5 displays the variation in the total density of states, of symmetric 
or antisymmetric character, when a channel is cut near the planar surface: An(@) = 
n,(o) - nb(0). The decrease in the background in the density of states can be related 
to the lack of matter in the new substrate when creating the channel. The most prominent 
feature in this figure is a low-frequency antisymmetric resonance; also, one can observe a 
few weak peaks and shoulders. In figures 6 and 7, we have presented the variation in the 
total density of states when a channel is cut near the planar surface of a substrate b and 
filled with a different material a: An(o) = n.(o) - nb(O). In these figures, the materials a 
and b have the same mass densities but different elastic constants such that C$/@ = 4 
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Fi-7. Same as for figure 6 but for C$’/C$’ = 0.25 and p(a/p@) = 1. 

and 0.25, respectively. In figure 6, there are only very broad features but a decrease in 
An(o) versus o which can be explained by the higher stiffness of material a compared 
with the substrate. On the contrary, figure 7 displays an increasin background of An(@) 
as well as rather sharp peaks. In the limit of a very large ratio C, 8) /C, (a) , one should find 
the eigenmodes of an isolated wire having its planar surface (Mz) free of stress and its 
curved surface (MI) rigidly bound. The first few resonances of such a wire are given by 
wR/ct = 2.10 - 3.45 - 4.85 - 5.35 - 6.30 - 6.90 - 7.15.. . for symmetric modes and 
3.7 - 5.15 - 6.50 - 7.0 - 7.85.. . for antisymmetric modes. The peaks in figure 6 show 
some similarity with this picture even though the correspondence is not totally satisfactory; 
higher values of CZ) might be necessary to achieve good correspondence. 

A more detailed analysis of the resonances associated with adsorbed wires and channels 
will need also the consideration of other shapes or configurations of the wires. 

5. Conclusions 

We presented in this paper a general method for the calculation of the density of states 
associated with the adsorption of wires on a flat surface and with empty and filled channels 
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cut into an otherwise planar surface and illustrated it by a few applications. This method, 
although outlined for vibrations of shear horizontal polarization, is completely general [6] 
and will be used for vibrations polarized in the saggital plane. Of course the bulk Green 
functions may have in general to be calculated numerically. This method should also be 
useful for the study of other excitations (electrons, magnons and polaritons) in any composite 
material and in particular in quantum wires and dots. 

This method enables us also to address the problems of scattering [6] by wires, channels 
and dots. Such problems are of current interest for in particular the scattering of acoustic 
waves by single resonating elements [7-91 and by periodic and quasi-periodic cormgated 
solid surfaces (see, e.g., [IO, 111). In particular, a correlation was found recently [ll] 
between the resonant frequencies of an adsorbed block and the appearance of a frequency 
gap in the transmission of ultrasonic waves through a plate decorated with Lucite blocks. 

B Djafori-Rouhani and L Dobrqvmki 

Appendix. Interface matrix elements for the systems studied in this paper 

We use the following notation to give the interface matrix elements: 

t ( m )  = t ( x m )  b'(m) = [%%)/axlll,, t"(m) = [azt(xi)/ax:1Ix,, 

and log y = 0.577 215 664 9.  . . (the Euler number). 

AI. The wire @gure l(a)) 

The surface elements of the bulk Green function G as defined by equations (10) are as 
follows. 

(i) Between two points lying on the M I  surface, 

G(nllm1) = - ( i /4C~)(1 + [5'(m)lz}'/z 
x ~ O ( l ) ~ ( w / c ~ x .  --x,)' + [t(n) - t ( m ) ~ ~ ~ ' / ~ n  n # m (Al) 
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(ii) Between two points of the M2 surface, 

A,(nZ[mZ) = 0 

A,(nZln2) = 5. 
m # n 

(iii) Between points lying one on the MI surface and the other on the M2 surface, 

A3. The channel (figure l(c)) 

After equation (17). the matrix elements of the surface Green function g b  along the MI 
surface of the channel are 
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